L'événement

CAMUS BRIGITTE

DICTIONNAIRE IMPERTINENT DE L'ART

.

DICTIONNAIRE IMPERTINENT DE L'ART




 


email ou code client :
mot de passe :
* Oublié ?

Première visite ?
Demander un devis
Créer un compte
Frais de port
à 1 euros
pour les particuliers
à partir de 50 euros
(France métropolitaine uniquement)

Ajouter cet article au panier

Nbre d'exemplaires:

Introduction to Applied Mathematics

Titre :

Introduction to Applied Mathematics

Caractéristiques :


Auteur(s) :STRANG
Editeur :WELLESLEY-CAMBRIDGE PRESS
Parution :11/1986
Langue :Anglais Anglais
Nbre de pages :758
ISBN :978-0-9614088-0-0
Reliure :Paperback
Prix :80.00 € ttc
Disponibilité :Livraison sous 2 à 10 jours ouvrables.

Couverture :


Introduction to Applied Mathematics

Résumé :

Renowned applied mathematician Gilbert Strang teaches applied mathematics with the clear explanations, examples and insights of an experienced teacher. This book progresses steadily through a range of topics from symmetric linear systems to differential equations to least squares and Kalman filtering and optimization. It clearly demonstrates the power of matrix algebra in engineering problem solving. This is an ideal book (beloved by many readers) for a first course on applied mathematics and a reference for more advanced applied mathematicians. The only prerequisite is a basic course in linear algebra.

Table des matières :

1. Symmetric Linear Systems: 1.1 Introduction
1.2 Gaussian elimination
1.3 Positive definite matrices
1.4 Minimum principles
1.5 Eigenvalues and dynamical systems
1.6 A review of matrix theory
2. Equilibrium Equations: 2.1 A framework for the applications
2.2 Constraints and Lagrange multipliers
2.3 Electrical networks
2.4 Structures in equilibrium
2.5 Least squares estimation and the Kalman filter
3. Equilibrium in the Continuous Case: 3.1 One-dimensional problems
3.2 Differential equations of equilibrium
3.3 Laplace's equation and potential flow
3.4 Vector calculus in three dimensions
3.5 Equilibrium of fluids and solids
3.6 Calculus of variations
4. Analytical Methods: 4.1 Fourier series and orthogonal expansions
4.2 Discrete Fourier series and convolution
4.3 Fourier integrals
4.4 Complex variables and conformal mapping
4.5 Complex integration
5. Numerical Methods: 5.1 Linear and nonlinear equations
5.2 Orthogonalization and eigenvalue problems
5.3 Semi-direct and iterative methods
5.4 The finite element method
5.5 The fast Fourier transform
6. Initial-Value Problems: 6.1 Ordinary differential equations
6.2 Stability and the phase plane and chaos
6.3 The Laplace transform and the z-transform
6.4 The heat equation vs. the wave equation
6.5 Difference methods for initial-value problems
6.6 Nonlinear conservation laws
7. Network Flows and Combinatorics: 7.1 Spanning trees and shortest paths
7.2 The marriage problem
7.3 Matching algorithms
7.4 Maximal flow in a network
8. Optimization: 8.1 Introduction to linear programming
8.2 The simplex method and Karmarkar's method
8.3 Duality in linear programming
8.4 Saddle points (minimax) and game theory
8.5 Nonlinear optimization
Software for scientific computing
References and acknowledgements
Solutions to selected exercises
Index.

Ajouter cet article au panier

Nbre d'exemplaires: