L'événement

.

LES NOUVEAUX OUTILS DE L'ENTREPRISE DE DEMAIN

de Philippe Mounier

LES NOUVEAUX OUTILS DE L'ENTREPRISE DE DEMAIN




 


email ou code client :
mot de passe :
* Oublié ?

Première visite ?
Demander un devis
Créer un compte
Frais de port
à 1 euros
pour les particuliers
à partir de 50 euros
(France métropolitaine uniquement)

Ajouter cet article au panier

Nbre d'exemplaires:

Bayesian Reasoning and Machine Learning

Titre :

Bayesian Reasoning and Machine Learning

Caractéristiques :


Auteur(s) :David Barber
Editeur :CAMBRIDGE UNIVERSITY PRESS
Parution :02/2012
Langue :Anglais Anglais
Nbre de pages :650
ISBN :9780521518147
Reliure :Livre relié
Prix :76.00 € ttc
Disponibilité :Livraison sous 2 à 10 jours ouvrables.

Couverture :


Bayesian Reasoning and Machine Learning

Résumé :

Machine learning methods extract value from vast data sets quickly and with modest resources. They are established tools in a wide range of industrial applications, including search engines, DNA sequencing, stock market analysis, and robot locomotion, and their use is spreading rapidly. People who know the methods have their choice of rewarding jobs. This hands-on text opens these opportunities to computer science students with modest mathematical backgrounds. It is designed for final-year undergraduates and master's students with limited background in linear algebra and calculus. Comprehensive and coherent, it develops everything from basic reasoning to advanced techniques within the framework of graphical models. Students learn more than a menu of techniques, they develop analytical and problem-solving skills that equip them for the real world. Numerous examples and exercises, both computer based and theoretical, are included in every chapter. Resources for students and instructors, including a MATLAB toolbox, are available online.

Table des matières :

Preface
Part I. Inference in Probabilistic Models: 1. Probabilistic reasoning
2. Basic graph concepts
3. Belief networks
4. Graphical models
5. Efficient inference in trees
6. The junction tree algorithm
7. Making decisions
Part II. Learning in Probabilistic Models: 8. Statistics for machine learning
9. Learning as inference
10. Naive Bayes
11. Learning with hidden variables
12. Bayesian model selection
Part III. Machine Learning: 13. Machine learning concepts
14. Nearest neighbour classification
15. Unsupervised linear dimension reduction
16. Supervised linear dimension reduction
17. Linear models
18. Bayesian linear models
19. Gaussian processes
20. Mixture models
21. Latent linear models
22. Latent ability models
Part IV. Dynamical Models: 23. Discrete-state Markov models
24. Continuous-state Markov models
25. Switching linear dynamical systems
26. Distributed computation
Part V. Approximate Inference: 27. Sampling
28. Deterministic approximate inference
Appendix. Background mathematics
Bibliography
Index.

Ajouter cet article au panier

Nbre d'exemplaires: